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A well-known sensitive two-point boundary value problem is solved by two very simple 
shooting methods. The origin of the problem and some properties of the solution are 
discussed. 

1. INTRODUCTION 

The numerical solution of the problem 

/’ = C sinh Cv O<Xdl (1.1) 

with the boundary conditions 

Y(O) = 0, Y(l) = 1, (1.2) 

has been considered repeatedly in the literature. It is an attractive problem, but it 
is interesting to note that it was never intended as a problem to be solved 
numerically. Indeed, in [I, p. 701 Keller poses it as an example to elucidate a 
certain feature appearing in more complicated situations. Although the problem is, 
in principle, a sensitive two-point boundary value problem, we will solve it here 
with the most unsophisticated shooting method (see Section 2). Some general 
properties of the solution are discussed in Section 3, and an alternate numerical 
approach is presented in Section 4. In the last section, the shooting method is 
applied to a problem where the integration cannot be carried to the end of the 
integration interval. The origin of Eq. (1.1) is discussed in the Appendix. 

During the past years, the numerical solution of two-point boundary value 
problems has been pursued very vigorously and with great success (cf. the survey 
article by Keller [2]). Several methods have been developed and implemented in 
powerful and accurate programs, and these programs have been tested on a number 
of problems that are known to possess inherent difficulties. However, it can happen 
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that a test problem looks more difficult in the context of a general purpose approach 
than it really is. For instance, the solution of the problem discussed in this note is 
actually quite simple, as has been pointed out previously [3,4, 51. 

It seems still worthwhile to consider simple methods for two-point boundary 
value problems as long as the advanced general purpose routines are not as widely 
available and as sturdy as, for instance, the routines for initial value problems or 
for problems in linear algebra. When faced with a two-point boundary value 
problem, the physicist or engineer may prefer to try an elementary approach, like 
the shooting method, but then take full advantage of the intimate knowledge of 
his own particular problem. Since he is attempting to solve only a single problem, 
possibly for a set of parameters, the number of iterations and the machine time 
required are not as crucial as they are for a general purpose tool. Also, the accuracy 
requirements of the final solutions are not as stringent; a graph of the results is 
often all that is desired [6, p. 2051. 

2. NUMERICAL SOLUTION 

The most elementary shooting method is used to solve the problem (l.l), (1.2). 
The integration routine is a direct implementation of the fourth-order Runge- 
Kutta formula [7,25.5.18], with constant stepsize throughout the interval, and the 
problem is solved on a short-wordlength machine (the IBM 360/44, in single 
precision). The constant stepsize is chosen not so much for the (insignificant) 

FIG. 1. The approach in the shooting method for Eq. (1.1). 
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TABLE I 

Solution of y” = C sinh Cy, y(0) = 0, y(1) = 1 
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(/I = 0.00125) 
X y(x) 

0.0 0.0 

0.2 0.13OOE - 3 

0.4 0.978OE - 3 

0.6 0.723OE - 2 

0.8 0.5373E - 1 

0.9 0.1521 

0.95 0.2763 

1.0 1.0 

0.0 0.0 

0.2 0.22298 - 4 

0.4 0.2478E - 3 

0.6 0.2731E - 2 

0.8 0.3019E - 1 

0.9 0.1031 

0.95 0.2044 

1.0 1.0 

0.0 0.0 

0.2 0.1636E - 5 

0.4 0.3295E - 4 

0.6 0.6618E - 3 

0.8 0.133OE - 1 

0.9 0.6059E - 1 

0.95 0.1370 

1.0 1.0 

- 

c = 10 

Y’(X) 

0.3584E - 3 

0.13486 - 2 

0.9787E - 2 

0.7231E - 1 

0.5438 

0.1672E + 1 

0.3729E + 1 

0.1497E + 3 

c = 12 

0.4894E - 4 

0.272OE - 3 

0.2973E - 2 

0.32786 - 1 

0.3642 

0.1318E + 1 

0.3115E + 1 

0.4703E + 3 

c= 15 

0.245OE - 5 

0.2467E - 4 

0.4943E - 3 

0.9927E - 2 

0.1999 

0.9405 

0.2437E + 1 

0.506E + 4 

- 

(extrapolated to h = 0) 

YCd Y’(X) 

0.0 

0.13OOE - 3 

0.9778E - 3 

0.72286 - 2 

0.5373E - 1 

0.1521 

0.2762 

1.0 

0.0 

0.2228E - 4 

0.2476E - 3 

0.273OE - 2 

0.3017E - 1 

0.1030 

0.2042 

1.0 

0.0 

0.1634E - 5 

0.3291 E - 4 

0.661OE - 3 

0.13298 - 1 

0.6052E - 1 

0.1368 

1.0 

0.3583E - 3 

0.1348E - 2 

0.97856 - 2 

0.72306 - 1 

0.5437 

0.1672E + 1 

0.37286 + 1 

0.1471E + 3 

0.4891E - 4 

0.27186 - 3 

0.2972E - 2 

0.3276E - 1 

0.3640 

0.1317E + 1 

0.3112E + 1 

0.421E + 3 

0.2446E - 5 

0.2464E - 4 

0.4937E - 3 

0.9915E - 2 

0.1996 

0.9392 

0.2432E + 1 

0.417E + 4 

581/=/3-3 
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simplification, but because it seems preferable to be reliably and systematically 
in error than to be sporadically more accurate, when a short wordlength is used. 
Particularly for sensitive problems, the solution may depend in an undesirable way 
on the position where the stepsize is altered. 

For the value of the constant C, we consider C = 10, 12, and 15, since the 
results for smaller C have been reported repeatedly in the literature (starting with 
[S] in 1972). 

The approach is divided into two parts, best described by referring to Fig. 1.A 
rough search is started with a small value for y’ (0); this value is increased until for 
one initial value, yp’(0), the solution y,,(u) crosses the line y = 1, whereas for the 
previous initial condition, y*‘(O), the solution satisfies ym(l) < 1. There is only 
one precaution necessary: although the integration is stopped as soon as yl, > 1, 
the growth of y(x) is so rapid that an exponential overflow may occur within one 
full Runge-Kutta step. In this case, an overflow trap is set to prevent the run 
from being terminated. 

From J+~ and Y,,~ , the next guess y’(O) is chosen as the average value, if y,(x) does 
not reach x = 1; otherwise, the next guess is computed by the secant method. The 
process is stopped when the accuracy consistent with the short wordlength is 
reached, and this is attained in fewer than 10 iterations. This is a more elementary 
approach than Newton’s method (or, in more difficult cases, Powell’s method) 
which has been used in [3], although the general approach is quite similar, including 
the device of stopping the integration when the solution is clearly about to diverge 
to infinity. 

The computation is carried out for a stepsize of It = l/800 and four larger 
stepsizes, and the results extrapolated to stepsize zero. The solutions are listed in 
Table I. For C = 10, they agree within a small fraction of a percent with the 
accurate results in [9, lo]. For C = 15, the results can be expected to be of the 
same accuracy, with the exception of J”( 1). This exception does not affect the shape 
of the curve y(x), and very accurate values for y’(1) follow anyway from the 
considerations discussed in the next section. Results for C > 10 are also reported 
in [4, 51 and will be compared in Section 4 below. 

3. ANALYSIS OF THE PROBLEM 

For the problem (1. 1), the closed form solution has been obtained by Weibel and 
independently by Stoer and Bulirsch [11] in the form of elliptic functions. Never- 
theless, certain well-known properties can be deduced in an elementary way. 

If the equation is integrated once, we obtain 

Y’~ = 2 cash Cy + co (3.1) 
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where the constant c, is related to the initial condition by 

so that 

y'yo) = 2 + co , 

y’(l) = (2 cash C - 2 + ~'~(0))~'~. (3.2) 

Next we compare the solution y(x) with the solution z(x) of the linearized 
problem (cf. [ 1 I]) 

ZV = c2z, 

z(0) = 0, z(l) = 1, 

i.e., with 

z(x) = sinh(Cx)/sinh C. (3.3) 

This solution z(x) must lie above y(x) for 0 < x < 1. Clearly, y’(O) < z’(O), since 
for a particular ordinate y” > z”, and if the curve y(x) were to intersect z(x), it 
would stay strictly above it for larger x values. Therefore 

y(x) < sinh(Cx)/sinh C, forOtx<l, 

and 

0 -=c Y’(O) < P, 

where /I = C/sinh C. 

(3.4) 

A considerably better approximation for the initial slope is obtained from the 
estimate in [12] (cf. also [l]); if we assume that C is so large that the singularity 

TABLE II 

Eigenvalues r\ of the Jacobian Matrix and Approximations to y’(O) and y’(1) 

C Y’(O) u’(W/8 Ly < y’(l) < (a’ + j3y 

0 0.0 1.0 0.125 - - 

5 43.1 0.4575E - 1 0.849 12.10041 12.10060 

6 85.2 0.1795E- 1 0.9052 20.03574 20.03576 

10 1049.4 0.3583E - 3 0.9866 148.4064212 

12 3423.2 0.48916 - 4 0.9950 403.4263147 

15 19177.2 0.2444E - 5 0.9989 1808.041861 
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of the solution occurs at x, slightly above x = 1 and use x, = 1 as an approxima- 
tion, then 

y’(0) k 8e-C. (3.5) 

The numerical results in Table II show that this approximation represents a quite 
accurate upper bound for y’(0) (see also [I 11, where higher-order terms can be 
obtained from the closed-form solution). 

Upper and lower bounds for y’(1) are easily obtained from Eqs. (3.2) and (3.4) 

where 

CY < y’(1) < (LX” + #@l/2, (3.6) 

cy* = 2 cash C - 2 = 4 sinh2(C/2). 

The values in Table II show that these bounds are quite sharp. The Table II also 
lists the eigenvalues of the Jacobian matrix at x = 1 [9], X = C (cash C)1/2. 

It might be mentioned that the maximum curvature and its ordinate can also be 
obtained rather easily. We simply state that for large C, the maximum curvature is 

k + C/1.51749, 

and the corresponding ordinate y, and slope y,,’ 

and 

y, G (l/C) cash-l((1/2)(13l/” - 1)) + 0.7598/C, 

y,’ + (131i2 - 3)1/2 * 0.7782. 

For C --f co, the radius of curvature goes to zero and the solution curve makes 
a corner at yO, as y,, also tends to zero. Since the initial slope yi (cf. Eq. (3.5)) 
approaches zero and y’(1) (cf. Eq. (3.6)) approaches infinity, for C + co the solu- 
tion curve follows the x-axis to x = 1, and then continues vertically to the point 
x = 1, y = 1. 

4. AN ALTERNATE NUMERICAL SOLUTION 

From the general shape of the solution curve it follows that the arclength s is a 
more suitable independent variable, 

(ds)2 = (dx)2 + (dy)2. 

This choice of independent variable seems advantageous in any problem where the 
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TABLE III 

Some Iterations in the Solution of Eqs. (4.1) for C = 15 

Iteration 1, so = l.S,y’(O) = 1.0 

d&7 x Y 

0.0 0.0 0.0 

0.2 0.12542 0.26487 

0.4 0.14183 0.56425 

0.6 0.14356 0.86424 

0.8 0.14375 1.16424 

1.0 0.14377 1.46424 

Iteration 4, s, = 1.87276, y’(0) = 0.14142E - 5 

0.0 0.0 0.0 

0.2 0.37455 0.129838- 4 

0.4 0.74906 0.35734E- 2 

0.6 1.00977 0.21576 

0.8 1.03495 0.58896 

1.0 1.03646 0.96350 

Iteration 7, s,, = 1.87277, y’(0) = 0.244216 - 5 

0.0 0.0 0.0 

0.2 0.37455 0.2242OE- 4 

0.4 0.74897 0.616318 - 2 

0.6 0.97978 0.25161 

0.8 0.99891 0.62538 

1.0 1.00007 0.99993 

Iteration 8, s,, = 1.87277, y’(0) = 0.24445OE - 5 

0.0 0.0 0.0 

0.2 0.37455 0.22442E- 4 

0.4 0.74897 0.616916- 2 

0.6 0.97972 0.25167 

0.8 0.99885 0.62545 

1.0 1.ooooO l.OOOOO 
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solution curve has very flat and very steep segments. In our case, it can be expected 
that the solution for large C is close to the limit for C -+ XI, i.e., 

x(s) =f= s, y(s) e= 0, forO<sf 1, 

x(s) + 1, L’(S) f s - 1, for 1 + s G 2. 

If we set f(y) = 4 sinh* (Q/2), the problem is transformed to 

dx/ds = {f(y) + 1 + y’(0)z)-lb, 

dylds = U(Y) + Y’WW(Y) + 1 + Y’(O)*P:‘*. 
(4.1) 

The functions now cannot grow faster then linearly. The value of y’(O) could be 
altered until X(S) and y(s) reach unity for some s,, < 2: x(q,) = y(s,,) = 1. How- 
ever, in the implementation, s,, is scaled out, so that the integration interval is fixed 
and S, is improved in the course of the iterations together with y’(O). The results of 
some iterations are shown in Table III. Rather poor initial guesses have been 
chosen, since with the approximation (3.5) for y’(O) and s,, = 2 convergence is 
already achieved in the third iteration. The results in Table IV show that there is 
good agreement with previously published results in [4, 5, 91. The arclength s,, is 
also listed; it appears to approach the limit s,,(C = co) = 2 with a deviation 
proportional to l/C. 

TABLE IV 

Initial slope y’(O) and Arclength so for Different C Values 

c 
Y’(O) Y’(O) 

using Eq. (4.1) in [4, 5, 91 so (2 - SdC 

5.00 

6.00 

10.00 

10.01 

12.00 

12.003 

13.59 

13.991 

15.00 

15.89 

0.4575OE- 1 

0.17951E - 1 

0.35834E- 3 

0.3548OE- 3 

0.4891OE - 4 

0.48764E- 4 

0.10001E - 4 

0.666OOE - 5 

0.24445E - 5 

0.10042E - 5 

0.4575046E- 1[9] 

0.17950956 - 1[9] 

0.3583378E- 3[9] 

0.356 E- 3[4] 

0.4878 E - 4[5] 

0.1 E - 4[4] 

0.6667 E - 5[5] 

0.1 E - 5[4] 

1.65077 1.7461 

1.69822 1.8107 

1.81039 1.8961 

1.81057 1.8962 

1.84128 1.9046 

1.84132 1.9046 

1.85965 1.9073 

1.86371 1 JO77 

I .87271 1.9084 

1.87987 1.9088 
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By analyzing the trend in the numerical results, the following expression is 
obtained 

y’(O) = 8cC(1 - 2e-C/2 + 2e-3. (4.2) 

For C > 10 it agrees with the numerical result within a relative error of less than 
10-S. 

5. A SECOND EXAMPLE 

It might be assumed that the shooting method must fail if the integration cannot 
be carried to the end of the integration interval for a particular guess of the initial 
conditions. This is not necessarily the case, as the following simple example shows: 

y” = C sinh CJJ + x*(1 - x - 1 1 - y l/(4 sinh(C/2))}1/2, (5.1) 

Y(O) = 0, y(l) = 1. 

It is impossible to shoot beyond the straight lines b (cf. Fig. 2): x = 1 - 1 1 - 
y l/(4 sinh(C/2)), because y” is no longer a real function. Nevertheless, the true 
solution can be approached in the same way as in Section 2, except that the 
approach now follows the arrows. 

FIG. 2. The approach in the shooting method for Eq. (5.1). 

I 1 - 
b 
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For C = 5 and a constant stepsize of h = 0.005, the solution was obtained in 
single precision on the IBM 360/44, as given in Table V. 

TABLE V 

Solution of Eq. (5.1) 

X Y(X) Y’(X) 

0.0 0.0 0.044072 

0.2 0.01036 0.06807 
0.4 0.03210 0.1678 
0.6 0.09000 0.4626 

0.8 0.2562 1.389 
0.9 0.4539 2.811 

0.95 0.6346 4.702 

1.0 1.0000 12.11 

APPENDIX: THE ORIGIN OF THE PROBLEM 

The differential equation y” = C sinh Cy can be interpreted as a drastic simpl& 
cation of more than one physical situation (cf. [12]). Here, we will trace its origin 
to a system of ordinary differential equations derived and solved by Weibel, who 
considers the following system, in natural units, in [ 13, Eqs. (1428)]: 

f~(r~)+(&2!p?)Eo=o, 

; $ (P-E,) = e(N - IZ), 

( 
eU e2Eoz -- n(r) = no exp kT 1 4mw2kT ’ 

N(r) = N,exp (- g - e2E02 ). 
4Mw2kT 

The difficulty in the numerical solution stems from the large ratio of two lengths 
of physical significance, namely the skin depth and the Debye length. If the equa- 
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tions are considered in Cartesian, rather than polar coordinates, and if, in addition, 
E, is assumed to be negligibly small, then the system reduces to 

dE/dx = N(x) - n(x), 

E(x) = -dU/dx, 

n(x) = n, exp(CU), 

N(x) = No exp(-CU), 

up to constant factors. This can be written as a second-order equation 

d2UJdx2 = No exp(-CU) - n,, exp(CU). 

The additional simplifying assumption N,, = n, = N*, and setting U = --y, then 
leads to 

y” = 2N* sinh Cy. 

However, the proper boundary conditions from the original problem, which are 
actually meaningful only if E,, # 0, would be 

Y’(O) = 0, Y’(l) = 0, 

with only the trivial solution y(x) = 0 for this oversimplified version. 
The physically realistic parameters are N* = 50 and C = 60. Therefore, it turns 

out that the problem with the artificial boundary conditions y(0) = 0, y(1) = 1 
becomes quite trivial; the graph is very close to the limit for C-+ co described in 
Section 3. The initial and final slope are well approximated by Eqs. (3.5) and (3.6). 
But this solution bears no relation to the physical problem since it is known that, 
for nonvanishing E,, , the derivative of y(x) is never very large. 
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